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SUMMARY

In this chapter we analyze the interaction between model simplification

and strategy design in a multimodel context and for multiple agent stochastic

decision problems with decentralized information. Under quasi-classical

information patterns, and using singular perturbations approach, we establish

asymptotic optimality of different multimodels which involve continuous and

* 'two types of sampled measurements. Our general analysis and discussion serve

to enhance our understanding of the interrelationships between structual

features of stochastic large scale systems, like time-scales and weak coupling,

*' and strategy design.
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1. INTRODUCTION

The problem of efficient management and control of large scale

systems has been extremely challenging to control engineers. There are

essentially two main issues of concern: the modeling issue is complicated

Udue to the large dimension of the system, and the control design issue is

complicated due to the presence of multiple decision makers having possibly

different goals and possessing decentralized information. Efforts to under-

stand the inherent complexities have led to the concept of nonclassical

information patterns [1]. This concept expresses a basic fact that a decision

maker has neither complete nor instantaneous access to other decision makers'

measurements and decisions. A related but perhaps more basic fact is

expressed by the multimodeling concept [2]. This concept accounts for the

many realistic situations when different decision makers have different infor-

mation about the system structure and dynamics and therefore use different

simplified models of the same large scale system. These models may differ in
o1

parameter values, signal uncertainties, and, more critically, in their basic

structural properties.

A strong motivation for the multimodeling approach is found in

multi-area power systems. The decision maker in one area uses a detailed

*model of his area only and some lower order "equivalent" of the rest of the

system. The decision makers in other areas behave in a similar way and as

a result each has his own view of the same large scale system. The main

advantage of such an empirical decomposition is that it leads to distributed

computations and less communication between the controllers because each

decision maker would only require measurements of the variables appearing in

his own reduced order model. Many crucial problems (instability, suboptimality,

.. .
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etc.) arise because the strategies designed with such inconsistent models are

then applied to the actual system.

We investigate, in this chapter, the effect of multimodeling incon-

sistencies on the design and implementation of multicontroller strategies

under certain quasi-classical information patterns. The approach taken is

perturbational. If the model inconsistencies are small, it is natural to

expect that their effect on the designed strategies and on the actual system

performance would be in some sense small. If this were not the case, the

designed strategies would not be applicable to realistic systems whose models

are never exactly known. We consider this low sensitivity property a O

sine qua non condition for any control design and, in particular, for the

design of large scale systems controlled from multiple control stations.

Another fundamental property of our perturbational approach is that

it concentrates on modeling errors caused by reducing the model order. Such

order reductions are achieved by separating the time scales, that is, by

considering slow and fast phenomena separately. A typical situation is when

the decision maker in one area neglects the fast phenomena in all other areas.

In geographically dispersed systems this practice is based on the experimental

observation that faster phenomena propagate to shorter distances than the

slower phenomena. For example, in a multimachine transient the slower

oscillatory modes are observed throughout the system, while faster inter-

machine oscillations are of a more local character [3].

A tool for analyzing the change in model order is the so-called

singular perturbation method which converts the change of model order into a

small parameter perturbation [4]. This parameter multiplies the derivatives

of the fast state variables and when it is set to zero the fast phenomena are



neglected. The fast phenomena are treated separately in the fast time scale

U where the slow variables are "frozen" at their quasi-steady state values.

*' This two-time-scale approach is asymptotic, that is, exact in the limit as

the ratio of speeds of the slow versus the fast dynamics tends to zero. When

this ratio is small, approximations are obtained from reduced order models in

separate time scales. This way the singular perturbation approach alleviates

difficulties due to high dimensionality and ill-conditioning resulting from

the interaction of slow and fast dynamic modes.

The chapter is organized as follows: In Section 2, we study the

fundamental problem of modeling and control of singularly perturbed systems

driven by Wiener processes under various cases of continuous and sampled

observations. An extension of the single parameter model, which realistically

captures the multimodeling situation, is formulated in Section 3 using multi-

parameter singular perturbations. In Section 4, we obtain multimodel solutions

to Nash and team problems under certain quasi-classical information patterns,

and establish their relationship with the solutions of the full problem. We

summarize the results with some concluding remarks in Sect4on 5.

To highlight the ideas, we have adopted an informal style for the

presentation and discussion of the main results. More rigorous treatment can

be found in quoted references.

L4
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2. MODELING AND CONTROL OF STOCHASTIC SINGULARLY PERTURBED SYSTEMS

2.1. Well-Posedness of Different Models

" The optimal control of stochastic singularly perturbed systems with

white noise inputs leads to difficulties not present in deterministic problems.

This is due to the idealized behavior of white noise which "fluctuates" faster

than the fast dynamic variables. To illustrate the problem of optimally

controlling a stochastic fast dynamic system, consider the following standard

2.! 'LQG formulation

system dyncics: edz = Az dt + Bu dt + Gdw (2.la)

'" measurement process: dy = Cz dt + dv (2.1b)

T
cost function: J = Etz'z+ f (z'Qz +u'u)dt}. (2.2)

0

Here, £>0 is the small singular perturbation parameter; w(t) and v(t) are

standard Wiener processes independent of each other, and all matrices are

time-invariant, with r2:0, Q2:0. We will further assume that A is a stable

matrix, that is, ReX(A) <0.

The optimal control u* which minimizes the cost J is obtained in

the usual manner by applying the separation principle, so that

u= -B'Kz (2.3)

whe-e K satisfies the Riccati equation

= -A'K-KA-Q+KBB'K; K(T) (2.4)

The vector z (t) denotes the optimal estimate of z(t) given the past observations,

which for any given u(t) is the output of the Kalman filter

I-,--

v1 .- -- js, : .'.-ti~ .: . § . §tiJ[.--..- .-.-..- ,[" -. - [.: -- .:'.- , -- - 9 . :,[... ,-,
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-di = Aidt+ Budt+ PC'(dy-Ci-dt); i(0) = E[z(O)] (2.5)

where - P(t) is the error covariance of .(t), satisfying

EP - AP + PA' + GG' -PC'CP; P(O) = ECov(z(O)), (2.6)

which does not depend on u(t). The resulting minimum value of the cost, J*,

is given by

J =Z'(O)K(O)i(O) +~ -r[P (T)p 1 tr[CPKPC'+PQ]dt. (2.7)

Notice from (2.6) and (2.7) that Cov(z-z)- 0(-) and J 0(-). Hence as E O,

both the covariance of the estimation error and optimal cost diverge, even

though the feedback gain of the optimal control law given by (2.3) remains

finite (outside the end-point boundary-layer). This is because, in the limit

as E:- 0, the fast variables z themselves tend to white noise processes, thus

losing their significance as physically meaningful dynamic variables. Hence

the problem formulation given by (2.1) and (2.2) is ill-posed. More detailed

0analysis of this formulation in the filtering and control context may be

found in [5,6].

One way to circumvent the difficulty encountered above is to appro-

priately "scale" the white noise terms in the model. Let us now investigate

ramifications of the following more general formulation:

The state dynamics description is replaced by

edz = Azdt+ Budt+ i'tGdw; PaeX(A) <0 (2.8a)

and the measurement process is

dy = Cz dt + c dv (2.8b)

.. . -.
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where 6, are some positive constants to be chosen. The cost function J is --

the same as before.

Now the optimal control is given by

u* -B'Ki (2.9)

where K(t) satisfies (2.4).

The optimal estimate z(t) is obtained from the Kalman filter

cdi = Aidt+ Budt+ M(t) (dy-Ci dt) i (0) -E z(0)] (2.10)

where M(t) is the filter gain given as

-(t) = cI- 2 BPC, (2.11)

and P(t) is the error covariance of z(t), satisfying

2a-1G 1-2Bp
-= AP+PA' +e E: GG'- F 'PCCP; P(0) =Cov(z(0)). (2.12)

The minimum value of the cost, J*, is given by

J*= c'(0)K(0)i(0) +tr(P(T)F) +E 1-2 . tr(CPKPC')dt+ f tr(PQ)dt. (2.13)

0 0

Let us nuw examine the behavior of P(t), M(t), and J* for various values of

a and 6, in the limit as +-0. The limiting behavior of P(t) and J* is

governed primarily by the parameter a, while the limiting behavior of M(t)

is governed by both parameters a and 6. Notice that the behavior of K(t) is

unaffected by the scaling.

A straightforward examination of (2.12) reveals that for L< , P(t)

diverges as E-0, which implies from (2.13) that J* also diverges as c0.

[Note that 6> 0 by hypothesis.] When P(t) diverges, the filter gain M(t) may

or may not diverge as c.-0, depending on the value of 6. If 3> , however,
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in addition to 0 <a < , M(t) always diverges as e- O This particular case

(a < , B > ) corresponds to the situation where the observations become noise-

free in the limit as e- 0, and therefore the filter gain becomes unbounded.

When at> and a is any positive constant, it readily follows from

(2.12) and (2.13) that P(t) and J* go to zero as E- 0. If at the same time

B< , then M(t) also goes to zero as s-* 0. This case (a > , B< ) corresponds

to the situation when the observations become too noisy in the limit as

_- 0, thus driving the filter gain to zero.

Hence the range of scaling (a,B>0; c# , # ) leads to ill-posed

formulations. This implies that it is not possible to give a physically

meaningful interpretation to the limiting solution. [Of course for any fixed

E >0, the problem is well-defined.] The only meaningful formulation is obtained

when a= 5K=  . In this case P(t), M(t), and J* remain bounded and nonzero and

yield a well-defined stochastic control problem in the limit as E-O.

The above analysis has indicated that in order to obtain a well-

defined stochastic control problem, the process and observation noise need to

be scaled in an appropriate manner. To gain further insight, let us directly

examine the limiting behavior of the stochastic process

cdz - Azdt+ -'- Gdw; ReX(A) <0, GG' >0. (2.14)

Clearly, without the scaling term, z(t) converges to white noise in the limit

as F- 0. If, with the above scaling, z(t) converges to something which is

physically meaningful, then this would provide a strong justification for

the model (2.8), with a=.

Solving for z(t) from (2.14) we obtain

z(t) = fteA(tT)/<Gdwe) (2.15)
Vo
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where we have assumed, without loss of generality, that z(O)= 0. Now

Cov(z(t)) - E{[-I teA(t- /eGd w ( T )1[ I  teA(t-t 2 /eGdw(t 2 )]'}

teA (t-c ) I G G A' (t-- )/cd

0

= W (t) (2.16)

where W (t) satisfies, for each F > 0, the linear matrix differential equation

=AW +WA+GG'.

Since ReX(A) < 0, we clearly have the limit (excluding boundary layers)

lim Cov(z(t)) = W (2.17)

where W is the positive definite (because GG' > 0) solution of the Lyapunov

equation

AW + WA' + GG' =0. (2.18)

This implies that z(t) converges in distribution to a zero mean constant

Gaussian random vector whose covariance W satisfies (2.18) [see also [7,8]].

The above convergence is indeed physically meaningful, and therefore we are

justified in using (2.14) to model a fast stochastic dynamic system.

Physically, the above analysis has indicated that in order to

meaningfully estimate and control a fast dynamic system, the influence of the

random disturbances has to be "limited" in some sense.
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2.2. Singularly Perturbed Systems with Continuous Measurements

Let us now consider the full (with both slow and fast variables)

stochastic singularly perturbed optimal control problem

dx =(Alx+A2z+B U)dt + G dw (2.19a)

(11  12 B1u 1

edz = ( A2 1x+A 2z+ Bu)dt + E'G dw (2.19b)

dy1 = (C1 1X+C 1 2z)dt + dv1  (2.20a)

dy2 = (C 2 1 x +C2 2 z)dt + c dv 2  (2.20b)

J = E{x'(T)rIx(T) +2ex'(T)rI 2z(T) + ez'(T)F2 z(T)

T 6 26
+ f (x'L{LIx +2e x'L'L z+ E2z'L'L2 +u'u)dt}. (2.21)

12 2

The parameters a, v, 6 represent the relative size of the small parameters

V! within the system, with respect to the small time constants of the fast

subsystem. The inclusion of a separate observation channel Y2 for the fast

subsystem is essential, since otherwise for a > 0 the fast variables cannot be esti-

mated meaningfully from the slow observation channel (signal-to-noise ratio tends

to zero). The stochastic processes w(t), v1  and v2(t) are standard

Wiener processes independent of each other and the Gaussian random vector

[x(O),z(0)]. We also assume that ReX(A 22) < 0. The optimal solution to the

problem posed by (2.19)-(2.21) can be obtained by invoking the separation

principle:

[ -(BWK +BK ' (B'K2 +B{KI 2 )z] (2.22)u* [ (B+ 1 2+2BK12)21

di (Al+A z + Bl u* )dt + [PIC + E-VPIC']da (2.23a)
d 1 2 1+B*2 2

Edz (= (A x+A 2+B u*)dt+ca [ePj 2C+ EVP Cda (2.23b) 7
21~~ ~ 22 2 2C .C2



where the innovations process u(t) is defined by

do(t) dy - C 11 C12 x t

EdY 2  [ C2 1  -7C z

Y2 x

-E-V 2 dt. (2.24)
d dY2]- , z L",

The control gain matrices satisfy

.-K KIA +E:KIA2+A'K+EA'1K' I+L'LI - (K1 2B2 +KIB)(BI'K,+B'K2);
1 11 12 21 11 1 21 12 1 2 1 1 1 12)

K I (T) - r 1  (2.25a)

=e K A +K eA',K +eA' K + E:L'L (KB K11)B eBK
.12 1 2 1+K 2A2 2 + 12 21 2 1L2 1(K2 B2 +KB t)(BK 2 + BK 2);

K 1 2 (T) - F1 2  (2.25b)

-.- EK =K A +A' K + EK' A + EA2 1 + C L2L2 (- e'B ( :'
2 2A22 222 + 2A1 2 1 2  + K 2L2 (K2 B2 + K 2 B) (B2 K2 + B1 K1 2);

K2 (T) r P2. (2.25c)

SThe filter covariances satisfy

A P ,+PA+cA +CP A' +G ,-V P "(CIPI+Ce-VC2P?
11 1 1 1 A12P12 122+1G1 21C1 1 1 2 12

P (0) = Cov(x(O)) (2.26a)

P2 EA P 12+EA 12P +P AT+E -OtP A' +G G'-(P CI+C PI2 C2)(CCPI2

12 11 1 12212 2 1 21 1 2 1C1 122 12

-+c-C2P2 ); P 1 2 (O) = ECCov(x(O) ,z(O)) (2.26b)

",w "ii P2 A22P+P2A'2+C +A21PI2 +
E

I  B - I A ' 1 + G 2 G 2 - ( c P I 2 I  • - '-2C2)2(:CiP 12 ,

F V 1-2G
22 2 P ::(0);E 1 O2 (z(O)). (2.26c) 4

2 2.2
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(2.28)

in order to have a finite cost. Furthermore, ,i wti1-derined tormulation also

requires that

0 <_ c - . _ . (2.29)

The restriction a -v is crucial, otherwise, either the fast variables are not

observed due to very noisy observations (a > v), or they are observed noiselessly

(a < v) in the limit as :- 0. If a > , the problem becomes deterministic as

i E -0, and if 6 > , the coupling between x and z becomes negligible. The

constraint B2>a insures that the state z is predominantly fast, and relaxing it

causes no conceptual difficulties.

Note that when a- = v =0, it is required that 6= to yield a

finite cost. In this case the fast variables are of no interest as far as

the control is concerned, and serve only as a model for a wide-band disturbance

to the slow variables. The important case is when at v = and 6=6=0, since

this results in a full weighting of the fast variable. For this problem, it

* " can be shown that [9],

lim u*= Us+Uf; 0< t <T (2.30)

where

u -R (NoLo +Bo'Ko)' s  (2.31)
0 00Z0

=x~ (A x+B u)dt +(P C'IG D')V- 1Idy-C idt+- C A- B u dt] (2.32)S 0 0 00 0 0 S 2s

' " "- - , -''-":- -". : "- .'"." .' ' ', .: ' .'" . '" : "' .'"'.' .''¢ "..% ',,' .. '-.' -' . - '-." ." " "< -" ." :'o" ". ' "- , .
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-K =K (A -B R N'L )+(A -B R N'L )K + L' (I-N R N') L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-K B R B'K; K (T) = ri (2.33)
00 00 0

.i ---1
A P +P A'-(P C'+G D')V- (CoPo+DoGo') +GoGo'; P (0) =Cov(x(O)) (2.34)

0 0 0 0 0 00 0 0 0

A_ AI A BIA 1- i = L I, R = N'N
Ao AI Bo - 2A22B2  N -L2A-2B LA o R NN

il 22 9 0 2A22B2 9 0 1 0 0 0

-1 A -1 =
C CC 2 2A 2 1 , D -CA-G G Gil V = I+D D' (2.35)0 i2' o -2A22G2' Go 0 0 0

uf -B2f (2.36)

edif (A22 +B uf)dt +P C12{dY2-C22 dt rC - -1 A
f 22 f 2_f 2 2 2  2 2 2 f L 2 1 C 2 2A 2 2A 2 1 ]Xsdt

T +C2A 21B u dt} (2.37)
22 22s

K A +A' K +L'L - KBB'K =0 (2.38)
2 22 222 2 2 2 22 2

A22 P2 +P A' +G2G_-PC'C-= 0 (2.39)

Notice that u and uf are obtained on solving a reduced-order slow control
s

problem and an infinite-time fast control problem, respectively. These problems /

can be solved independently of each other. It is interesting to note that the

fast filter is driven by the slow variables as well. Hence the implementation

of the filters is not independent, but sequential in nature. The near-

optimality result (2.30) is valid only for tE (0,T), because the boundary-

layer terms have been neglected.

2.3. Singularly Perturbed Systems with Sampled Measurements

So far we have examined the modeling and control aspects of

stochastic singularly perturbed systems when the measurement process is

. ." . , .- . . .""".. --..... ... . .. '-..' --.. .,.-.... - .'-..-.. ...... . ,-.. -..-'-,-,.-..-.-,
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continuous in time. We shall now examine the same aspects when the measure-

ment process consists of discrete samples. Two types of sampled observations

* will be considered. In the first case, sampled values of the state in addi-

tive noise are observed, and in the second case sampled values of a continuous-

time measurement process are observed. These types of observations play an

important role in multi-agent decision problems as we shall see later.

V It is a well-known fact that the open-loop dynamics of any system of

the form (2.19) with c= , a=O, can be transformed into a block-diagonal form

where the pure slow and fast variables are explicitly displayed [10]. Hence,

L without loss of generality, we shall assume that the system to be controlled is

given by

dx = (Alx+B u)dt + Gldw. (2.40a)

2dz 2(A2z+g2u)dt + 7 G2dw; ReX(A 2) <0. (2.40b)

The performance index will be given by +

T
J = E(x(T)rtx(T) +ez'(T)r 2z(T)+ f (x'Q x+z'Q2z +u'u)dt}. (2.41)

0

* We now consider two cases of sampled observations

2.3.1. Case 1: Noisy measurements of sampled values of state

The observations consist of sampled noisy measurements of the state.

Specifically, the observations

y(j) = C X(t.) + C2z(t.) + v(j) (2.42)

are available at sampled time instant t. where j=0,1,...,N-1 and

A more general formulation would include cross terms involving slow
and fast variables. Here we are avoiding this in order not to obscure the
essentials of the following analysis by notational complexity. We should note,

. though, that such a restriction leads to no conceptual loss of generality. 4

: ' '. .'
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Ot 1<t< ... < _tNIT. Let e={0,1,...,N-1}. Then the random vectors

{v(j) e} are assumed to have independent Gaussian statistics with

v(j) -N(O,R.), R >0, jE6. Their statistics are also assumed to be indepen-

dent of the Wiener process w(t) and the Gaussian vector [x(O),z(0)].

A near-optimal solution to the problem defined by (2.40)-(2.42)

can be shown to be given by

u u + uf (2.43) **'

where

u (t) -B'Ki (t,t)X(t te ti t j e (2.44)s 1 [t 1,tsij+ I )

-K A'K +KA + Q-KB IB K I ; KI1(T) = r, (2.45)

l (t,t (ABIBK)I(tt); l(tt) = I

te[tj,t ), je (2.46)
jj+1

x s ( t )  A, As(t) + Bl~ ) uxM(0) -E[x(0) Iq

tj [tj_lt j ;  j =1,2,...,N (2.47)

-1 x : +. 9

(t.. j s (t :)+S (j)[y(j)-C 1 s (t)j+C 2A 2 B 2us( )

i s =A E + Z A' +GIG ; Es ( 0 )  Cov[x(0) ]
1 is si1 11 s

tE [tjlt ;  
= 1,2,.. .,N (2.48)

Es(t = (t s C z (t

S1 Q) E (t )CItC z (t_)C{ +C Z C +R~I- (2.49)

A 2 + E A' + G G' - 0 (2.50)
2.f f 2 22
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f (t 2' 2 2 (t, t )(t) tE [t.,St ), : je (2.51)
f 2 2 2J j+1

K-A'K +K -'+(KB B'K =0(2.52)
2 2 K2 A2 2  2 2 2 2

eC'2(t,t)= (A -B2B K )'(T~t) TV(t.t.)=

Ez f (t) A A2 f(t) +B 2 uf(t); if (0) =E[z(0)]

tE [t. 1 t) 1,2, . . .N (2.54)

Sf (t) = Zf(t )+S 2 (j)(Y(i)-C 1 s t )-C 2 f ( +C2 A2 B us(tj

(j) E :C[C E (t )C I+C z C'R F (2.55)2 f 2 1Is j 1 2 f 2

It u'* is the optimal solution to the problem (2.40)-(2.42), then it can be

shown that

lim u u 0 <t <T

(2.56)

lim (J(u*)Ju 0)) =0.I

2.3.2. Case 2: Sampled values of continuous noisy measurements

The measurement process is a continuous-time stochastic process

described by

t7!
y(t) = f [C x(s)+ C 2z(s)]ds + q(t) (2.57)

0

where q(t) is a standard Wiener process independent of w(t) and the Gaussian

vector [x(0),z(0)J.
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Let 0=t <t 1 < <t" < t N=T and e={0,1,...,N-}. The measure-

ment process is not observed on the entire time interval [O,T], but only its

sampled values at time instants tI, t2,...,tN are observed. Therefore, the

only observation in the subinterval [ti,t+) is
J1+1 h.

t.
' Y(t.) = f [C x(s) + C z(s)lds + q(t (2.58)

'k 1 C2Z~)d ~0

which is made at the beginning of that subinterval. In the time interval

[O,tl),no observations are made and only the prior statistics of the random

quantities are available.

Let

yQj) =y(t) -y(t I

t.

= f [CIX(S) +C 2 z(s) Ids + v(j) (2.59)
tj- I  ,

where v(j)=q(t)-q(tj_) is a discrete-time Gaussian white noise process

with mean zero and variance R= (t _-it)I. Clearly the sigma-algebras

generated by {y(ti),i=l,2,... ,j} and {y(i) , i=1,2,....,j} are equivalent.

A near-optimal solution to the problem defined by (2.40), (2.41),

(2.59) can be obtained as follows:

u = u +uf (2.60)0 S f?

where

u (t) = -B'Kl~l(t,t )xs(t ); tE [tj,t. ), j e (2.61)
5 1 sj jJ+1

-K AIKI+KIAI+Q K B B'KI ;  K = r (2.62)

'Pl(t,t ) = (A -B= I .-

rE [tiltj~) j E (2.63)
j +1
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ixtW A x(t)+B u M) x (0) =E[x(0)]

tE [t 1 9It.) j 1,2,=
(2.64)

t.

J -1

Z A E2 + A' + GG'; Es(0) =Cov~x(0)]s i s sil s

t. (2.65)

s s 1 j-1 s j1 sj-i-

+ f C1 fj4)(r,p)G1 G'4)(tjl~pr

= t. ris '

R f C 1 0(ptj...)dp Z5 (t. 1 l) f 4)' (ritj..I)Cjdr
ti-i j-1

+ f c I fp 4)(p,r)G G,' f 4)(~r)C,'dZ dr dp
t t s I r
i -I j-1

t. t.

tj-i

t t.

+ f C2  4)(pr)G G' f 4(Z~r)C'dt dr dp + R. (2.66)

t r

I ~~i-I s ji j1

t

II
+1j f [4)(t.r )G G(t. f 4'(~ )'r t)dR (.7

j-- sjisj l
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te(ti St , je 6(2.68)J' +1

4f (t,t) = A 24f (t,t.); Of(t.,... =

tE [t t ), j6 (2.69)j'j+1

A Z + EA' + GG' =0 (2.70)2 f f 2 2 2

u f(t) =-B K 2Y2 (t't.) f (t ) te [tj ,t ), j~E (2.71)

A'K + K 'K =0(2.72)

2 2 2 2 + 2 - 2 B2B2i 2

tE [t ,t ) E 0 ~ (2.73)j+1L

£Zf(t) A A2 (t) +B uf(t); f(0) =E[z(0)I

S2 (j }t-~t j1,, N (2.74)
[C -1

f ti f(t-)+ ()Yj -f C r+ ()C A 2B 2u s(r)]dr]

N t.

S 2 j (D ,f(t.,t. )E f J* '(r,t. 1 )CYr
t
i-i

t. t.

+ f 4,(t.,p)G2G f 4,(r,p)C'dr dp] R.(2.75)
t. p
j-1

If u is the optimal solution to the problem defined by (2.40), (2.41), (2.59),

then it can be shown that



1.9

lim u* u 0 < t <T

(2.76)

1 im (J (u*) -i(uo) 0

-y-

We should point out that the near-optimality of the composite control u in

both cases 1 and 2 is valid only in the open interval (O,T) because the

boundary-layer terms have been neglected.

An important distinction between the above formulations involving

discrete observations and the earlier formulation involving continuous obser-

vations is that, in the discrete observations cases, there is no need to

scale the measurement noise and it is not necessary to have a separate obser-

vation channel for the fast variables. This is because the sampling interval

is fixed and independent of e, and hence there is no interaction between the

g dynamics of the observation process and the input noise process.

Now that we understand the subtleties involved in the modeling and

- control of stochastic singularly perturbed systems under various observation

rpatterns, the next step is to study multi-agent decision problems. But before

we do this, we shall introduce, in the next section, the important concept of

multimodeling of large scale systems within the framework of time-scales and

singular perturbations. This concept plays a crucial role in the near-optimal

design of multi-agent decision policies for stochastic singularly perturbed

systems.

4..

.1
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3. MULTIMODELING BY SINGULAR PERTURBATIONS

The need for model simplification with a reduction (or distribution)

of computational effort is partiulAarly acute for large scale systems involving

hundreds or thousands of state variables, often at different geographical

locations. Some form of decentralized modeling and control which exploits the

weak interactions between subsystems is then required. While there are a

number of approaches to the study of large scale systems [1], the success of

any proposed decentralized scheme critically depends upon the choice of suo-

systems [1i].

A fundamental relationship between time-scales and weak-coupling

has been developed for power systems, Markov chains, and other classes of

large scale networks [12-15]. If the interactions of N"local" subsystems

are treated as 0(e), and if each subsystem has an equilibrium manifold (null

space), then the local subsystems are decoupled in the fast time scale. However,

they strongly interact in a slow time scale and form an aggregate model whose

dimension is equal to the number (N) of the local subsystems. The system

is thus decomposed into N+I subsystems (N in the fast and one in the slow

time scale).

To elucidate this relationship, consider the following class of

interconnected subsystems

dxdx I - N -

=-A.. x. + E A x i=l,2,...,N (3.1)
-t E11 1 j=l

j #i

where E >0 and A.. is a stable matrix with one zero eigenvalue. Assuming that

xi(0) is not in the null space of Aii, the first term dominates the second

term on the right hand side of (3.1), and therefore the interconnections can be

L[-.
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* neglected initially. As the fast transients draw x.(t) towards the equilibrium

manifold (the null space of A..), the two terms on the right hand side of (3.1)
ii

. become the same order of magnitude, and therefore from this time onwards the

interconnections can no longer be neglected. Hence, the dynamic behavior of

(3.1) can be characterized by two separate motions: an initial fast transient

" within each isolated subsystem, followed by a slow motion around the equilibrium

manifold obtained on neglecting the interconnections. Therefore, in the short

term the subsystems can be treated in isolation, while in the longer term they

become strongly-coupled.

We now introduce a transformation to make the slow and fast parts

of R.(t) explicit. Let1

~Xl El --- A I X

00
x C2 A .2d 2 -2 22 2

dt 
+

0

pHN~ 0J ANN iXN

0 A12 AIN X (3.2)

PA 21 0 ... A 2
A21 0 2N 2

'ANI AN2 . 0 N

or

-I
= (2 A + AI). (3.3)

MDefine the left and right eigenvectors of A for the zero eigenvalue as

AoT =0, VAo 0, VT =

0
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wihere

A i 0, v A =0, V.t. =1 =12. ,

T = block diag~ttt,. .

V = block diag~v13v 2 ,"..v,]. (3.4)

We also define block-diagonal matrices W and S as follows

WT =0, VS=O0, WS = In-N* (3.5)

Now, using the following transformation

nN

z =T W, zERfl (3.6a)

and its inverse

x =Tx +Sz, (3.6b)

the interconnected system (3.3) can be transformed into

k=VA Tx + VA Sz

2i 2WA Tx + W(A +Q2A )Sz (3.7)1 0 1

For sufficiently small ei, (3.7) can be approximated by the model

~VA Tx+ Z A.z.
1 j=1 J J

E ..iWAs z; i-1,2,...,N (3.8)

where

vA 

v Aj

LN Nj_
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Notice that the fast transients within the subsystems are decoupled, and

they interact only through the slow core. A long term aggregate model is

obtained by letting E.- O, and is given by
1

x VAITxs. (3.9)
5 i

The previous analysis has shown that for a wide class of large scale

systems, the notions of subsystems, their coupling and time scales are inter-

related and lead to a multiparameter singularly perturbed model with a

strongly-coupled slow "core" representing the long term system-wide behavior,

and weakly-coupled fast subsystems representing the short-term local behavior.

With the presence of control and stochastic disturbance inputs, a

generalization of (3.8) can be obtained as

N
dx = A xdt+ 2 (A ozjdt+B U.dt+G dw) (3.10a)

00 = J oJj oJ j 0j j

N
Eidzi = (Aix+Aiiz+ j ..A..z +Biiu)dt+V'c iG idwi

j#i i=1,2,...,N (3.10b)

* where fu.(t); i= 1,2,...,N} are the control inputs, and {wi(t); i= 1,2,...,N}
. 1

are standard Wiener processes independent of each other. Each fast subsystem

* "has its own singular perturbation parameter eland is weakly-coupled to

other fast subsystems through ei." The fast subsystem i is affected by its

own control input ui(t) and disturbance input wi(t). The slow subsystem,being

the common "core",is affected, in general, by all the subsystem controls and

disturbances.

In a situation like this, it is rational for a subsystem controller

to neglect all other fast subsystems and to concentrate on its own subsystem,

F ,.4
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P plus, of course, the slow interaction with others through the "core." For

the i-th controller "to neglect all other subsystems" simply means to set

all s-parameters equal to zero, except for s., which is to be kept at its

true value. The i-th controller's simplified model is then

i i

dx z  A Aixdt+A .z.dt+B oiu idt+ E (B. .u dt+G ojdwi)+G .dw. (3.11a)

ji

S- dz = A. xi id+A.z dt+B.udt+ . Giidwi (3.llb)10l 111 111 i i

where

i -1 -1
A = A - Z A .A..A. B. = B . -A .A..B...

1 00 1ji 3JJJO ij oj oj Jj

--. We denote x with a superscript rather than a subscript to stress

i
the fact that x is not a component of x, but the i-th controller's view of

x. In reality, the model (3.11) is often all that i-th controller knows about

the whole system. The k-th controller, on the other hand, has a different

model of the same large scale system. This situation, called multimodeling,

was first formulated and investigated in [2] in a deterministic setup (with

no disturbance inputs).

In the next section we shall study the impact of multimodel assump-

tions on the design of multi-agent control strategies in the presence of

disturbance inputs and noisy observations.

.....
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4. MULTI-AGENT DECISION PROBLEMS

We shall restrict our discussion in this section to the case of

two decision makers, as this will keep the notation simple and ease the

exposition of the principle ideas. All the results that we shall present

here extend to the case of more than two agents in a fairly straightforward

fashion. Furthermore, we shall present and discuss only the main results; the

proofs of the various propositions shall be omitted, but they can be found in

. the references cited.

It is well-known that a system of the form (3.10) can be transformed

" into a system with purely slow and fast variables [2]. Hence, without loss

of generality, we shall consider multi-parameter singularly perturbed systems

of the form

2
dz A z dt + Z (B .u.dt+G .dw.) (4.1a)

0 000 j=1 oj 3 °3 j

i dzi= (A iiz i+C i "Ai "z ' + Bi.u.)dt + 4.T Giidwi,

i,j -l,2; i j (4.11b)

with dimz.=n., i=0,1,2, and dimu.=mi , i=1,2. The initial conditions are"-1 1 1 1

assumed to be Gaussian with

E[zi(0)] E[z.(O) z!(O)l = N i,j 0,1,2. (4.2)
1 Jo ij'

Furthermore, we shall restrict ourselves to the case {Re X(A ii) <0, i= 1,2}.

In a multimodel situation, decision maker i models only z and zi ,

but neglects z.. Also, his observations are functions of z and z. alone.
0 1

This situation with decentralized observations leads to problems involving

nonclassical information patterns, for which no finite-dimensional solution

Le.
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exists in general. In order to obtain finite-dimensional solutions which

can be implemented in practice, one needs to modify the information structure.

In this section we shall study three problems with quasi-classical information

patterns. The first problem is a Nash problem with continuous measurements

where the information available to the decision makers is restricted to the

state of a finite-dimensional compensator of a specified structure. The next

two problems are team problems with sampled measurements, where the decision

makers exchange information with a delay of one sample period. The two types

of sampled measurements are those that we have considered earlier in Section 2.

4.1. Nash Game with Continuous Measurements

The decision makers make decentralized continuous measurements which

are given by

dyoi C oiz 0dt + dv .

dy C z dt + /c. dv i = 1,2 (4.3)

where dim y oi= poi and dimy ii =Pii" The processes v oi(t) and vii(t) are

standard Wiener processes, independent of each other and of the process noise

w.(t). Defining x'= [z' Z' z]' y = [Yo , = [o, and

w'= [w' w1]. The system of equations (4.1)-(4.3) can be written in a

composite form as

2
dx = (A(E:)x+ Z B.(c)u.)dt + G(c)dw (4.4)

dy i  = K.(I~xtOdx;O)i= 1,2 (4.5)

E~x(0)] x E[x(O)x'(O)] =N (4.6)
O '9'
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where dimx=n=n0+n1 +n 2 and dimyi=Pi=Poi+ii. The matrices A(E), Bi(E),

G(e), C.(E), and N are appropriately defined.
°-

The information available to decision maker i at time t is given by

tN(t) = {xi(t), Xo N} (4.7)
1 

, o 0

where i. (t) is the state of the n-dimensional compensatorK 1

di. = (Fixi +H iu i)dt + L i[dyi-Cii dt]. (4.8)

Let a. (t) denote the sigma-algebra generated by the information set a (t).

Further, let H. denote the class of second-order stochastic processes

{u.(t), t>0} which are a .(t)-measurable. Then, a permissible strategy for
m.

decision maker i is a mapping vi: [O,T] xRn -R ', such that v.(., ai)E H. 

Denote the class of all such strategies for decision maker i by F..

For each {v.E .; i=1,2}, the cost functionals for the two decision1 2.

makers are given by

J .( 1 , 2) E{zo (T) r o i z o  ( T)  + E izj(Tr i z i(T) --

T
+ f (z'Q .z + ZQ z +U'u )dt u.(t) (t,a j=1, 2

0 0iii i i j "

i= 1,2 (4.9a)

or, equivalently

T

Ji('V2)= E{x'(T) F(£)x(T) +f (x'Q.x+uiu.)dtlu.(t) =vJ (t,a.), j=1,2}
0

i= 1,2 (4.9b)

where the expectation is taken over the underlying statistics.

The decision makers are required to select the matrices F*, H*, L.;

the initial conditions x*(O) and strategies v.[t i(t)] such that

*. ...-.--.-

. . . . . . . . . . . .. ...
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J.(v.,v*)< Ji (Vi.v) VV.E.; i,j=1,2; i#j. (4.10)

The pair of inequalities above defines the Nash equilibrium point.

The optimal solution to the problem defined by (4.1)-(4.10) is

obtained by extending the results of [16] to the nonzero-sum case, and is

given by

= -B!Kx. i 1,2 (4.11a)

F-.*=ABjjj[+(joM) (o -1 I

F A A-B.B!K.[I+(M. -M (M M ; i,j 1,2; i j (4.llb)
1 JJJ JI 000

L= MiC1; i 1,2 (4.11c)

H* Bi; i= 1,2 (4.11d)

i*(0) = R; * i= 1,2 (4.11e)

where K. satisfies the coupled set of Riccati equations i1

K. -K.A -A'K -Qi+KiSiKi+KiS K +K SKi; K.(T) - .1-. 1 i ii i j j jj 1 1

S. = B.B'; i,j =1,2; i#j. (4.12)
5'1 1 1

M(t) is a symmetric nonnegative definite matrix satisfying the Lyapunov

equation

M =FM + FM' + BB'; M (0) sx R'+N, ij 0
1J0 0

= N otherwise (4.13a)

. ' , . ..--. -.. . ,

.a 1. - -a - A* .. . -..•7
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where

A-S K-SK S1K1  S2K
1 1 2K2  112 2

F A-*SKF*-L*C S1L F~ 2 2 1 1 1 2]
A-F*-S K S K F*-*

-G 0 0

B= -G L* 0

1G 0 L (4.13b)

The compensators are unbiased, in the sense that for all tE [0,T),

Efx (t) i(t)} =x(t); i= 1, 2. (4.14)

Furthermore

*E{[x(t)-i (t)]i'(t} =0; i= 1,2. (4.15)
i i

Thus, each component of the error x(t)- .(t) is orthogonal to each component

of .(t), and .(t) may be regarded in some sense an estimate of x(t). Notice

thtthe solution exhibits a unidirectional separation in estimation and control.

Although the control gains are obtained independently, the optimal filter

matrices and covariance M(t) depend on the control gains, resulting in a

"dual effect" [17].

The optimal costs are given by

T
J 'K (O)R + tr (Oii d0+ (K S KiM. +K.S.K.M.1 i 1 0 11 1 J J ijo

+KS-K )dt}; i,j = 1,2; i=j. (4.16)
j e i oj

The linear strategy (4.11a) is the unique Nash strategy for this problem.

Since the finite-dimensional estimators (4.8) are not Kalman filters, it is

Y
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not clear, at the outset, what their limiting structure (as the small parameters

go to zero) looks like. Does the full-order estimator decompose into a number of

decoupled low-order estimators? Is it possible to obtain a near-equilibrium

solution from low-order subproblems?

It will be shown that, in the limit as the small parameters go to zero,

the full-order estimator (4.8) decomposes into an n -dimensional estimator
0

in the slow time scale which has a similar structure, and two n 1 - and n 2-

dimensional Kalman filters in the fast time scale. Furthermore, the near-

equilibrium solution is in fact the multimodel solution, i.e., the solution

obtained when decision maker i neglects z., and models only z and z.. The -

multimodel assumption leads to the formulation of three low-order subproblems:

two independent stochastic control problems, one for each decision maker, in

the fast time scale, and a stochastic Nash game in the slow time scale.

The slow subproblem is obtained by-neglecting all the small para-

meters in (4.1), and is given by

2 2

dz = z + Z B .u. )dt+ Z G idw. (4.17)os 00ooos i=l 01 is i ol

C. 0 Idv
01 I o- I

dy. z -dt+i U-dt+ dv''-CA d

= (C. isz os+D isu is)dt + dv is; i= 1,2 (4.18)

E[z (0)] = Zo, E[z (0) z' (0) ] = No. (4.19)
05 00" 05 05 00

Each decision maker is constrained to use only an n -dimensional compensator0

of the form
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di (F. i +H. u )dt+L [dy. -C. dt-D. u dtl,gis is is is is is is is is is is

i1 1, 2. (4.20)

Let

is (t) is M~ zt) 00 N 00 (4.21)

*and a. ist) denote the sigma-algebra generated by the information set a. i(t).

Further, let H.i denote the class of second-order stochastic processes

{u.i (t), til which are a.i (t)-measurable. Define the slow strategy v. is as

the mapping v.i [0,T] x R -R i, such that v i (-,a i )C H is Denote the class

is'

For each {v. is E .;i i=1,2}, the slow cost functionals for the

decision makers are given by

T7

~is s ')2 =Ez' (T)r z os(T) + f(z'O0 z +u'R u)dt
is 1' o i05 .os i os is isuis

u W V(tocc.) j=1,21; i 1,2 (4.22)

where

R =I+ (Aj. )'Q (Ai1B.)
is ii ii i ii i

The decision makers are required to select the matrices F* sy H.5S, L'

the initial conditions i* (0), and strategies v* ltit. (t)] such that
is is is

J (v,pv!) VV Eiis:s rvE i, j=1, 2, i~j. (4.23)

The optimal solution to the slow subproblem defined by (4.17)-(4.23) is

given by

=-R Bt K. z.; i=1,2 (4.24a)
is is oii
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F. A -B *R.BB.K. [I + (M. M. )( M . ];i,j=l,2;
is 00 0j JS 0j js J0 ji 00 01. (4.24b)

i~j

L is [M.iC.0 IG .(C..A iG. i), {I + (C..iA i..G .)(C.. A.i G.ii)'I1
(4.24c)

i=1,2

H. B i=1,2 (4.24d)
is Bi

z i (0) = z 00; il1,2 (4.24e)

where K. is the solution of the coupled set of Riccati equations
is

K. K. A -A' K. Q- + K. S. K. + K. S. K. + K. S. K.
is is 00 00 is 15 is is is is js J5 js Si

(4-25)

K (T) r . S. B .R B. i,j=1,2; i~j
is oi is 01 1s 01

M(t) is a symmetric nonnegative definite matrix satisfying the Lyapunov

equation

M =F M + MF' + B B M (0)=z z' + N ;i=j=O (4.26a)
s S S S ij 00 00 00

whr N~o , otherwise

A -S K -S K S K S K
00 lslIs 2s 2s ls ls 2s 2s

F5 00 Fls S2s K2s Fls -Lls Cls 2s? 2s

A -F -5K S K F L C
00 2s ls ls ls ls 2s 2s 2s

-G 00 0

B G -L P L 0
s 0 lsl1 ls

-G -L P 0 L
0 2s 2 2s

0o [ ol Go2l
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0 0I
Pi C G "  i=1,2. (4.26b)

The optimal costs are given by

K (0)z + t ii) + f(K. S. K. M.. + K. S. K. M.tis .oo(0soo +K 0 is is is ii is js is jo

+ K. S. K. M .)dt} ; i,j=1,2 ; i#j (4.27)
is js is oj

The fast subproblems, on the other hand, are formulated 'locally' at the

subsystem level. These are stochastic control problems because the decision

makers do not interact in the fast cime scale:

£.dz.- (Aiizif + Biiuif )dt + Vc.' G..dw. (4.28)

dyiif = Ciizifdt + 1ci dv.. (4.29)

E[z (0)] = zo , E[z (0) zi (0)) N (4.30)
if io if if ii (.0

T

Jif E{i z if(T) iiz if(T) + f(zfQiizif + u ifu if)dt (4.31)

Notice that this fast subproblem is exactly the one we studied in

detail in Section 2. Its solution, as e.-, is given by
i

u = BK z (4.32)
if ii ifzif

where K satisfies the Riccati equation

KifAii + A' K + Q - Ki B.iBiKi = 0 (4.33)

and zif is the state of the Kalman filter

if4
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V. £dZ (A z + B u )dt + P CG ldy - C.. dt]i if ii if ii if if ii if - if

z"" = z (4.34)L"." if(0 io

P is the error covariance of z satisfying
if sfin

Pf A: + A. .P + i G. - P. + A P = 0 (4.35)

and the optimal cost is given by

if .Q., J- T trPQ + C .P K " C. (4.36)

if tr{Pifii ii if if if ii(

The following proposition establishes the connection between the solutions of

the slow and fast subproblems and the full-order problem. Its proof may be

found in [7].

Proposition 4.1:

• * *- Vif(0))
i) Ji(t,x i(t))= v (t (t)) + Uif (z(t)) + 0( V tE(,T)

= + f + T tr{Q.W.} + O(IIE1I) i=1,2i is Jif 1

where

E£ [C1 C2 C12 E21]

and Wi is the nonnegative definite solution of the Lyapunov equation

A. .W. + W.A:. + G..G. 0 ; i=1,2 (4.37)
ii 1 i i i ii

Since the multimodel strategies need only decentralized 'state

- -estimates,' each decision maker needs to construct only two filters of

dimensions n and ni, respectively, instead of constructing one filter of

dimension n + n, + n., as required by the optimal solution. This would

result in lower implementation costs.
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4.2. Team Problems with Sampled Measurements

We shall now consider problems wherein the measurement processes of

the decision makers are not continuous on the entire time interval [0,T], but

consist of sampled values observed at time instants to, t,...,t where

0 = to < t1 <...< tN-1 < tN = T. Let e denote the index set {0,1,...

and yi(j) denote the Pi-dimensional observations made by decision maker - i at
1 i

time instant t., jEe. Thus the only measurement of decision maker - i in the

subinterval [tjt j+) is yi(j).

The quasi-classical information pattern that we shall consider here

is the so-called "one-step-delay observation sharing pattern," wherein the

decision makers exchange their independent sampled observations with a delay

of one sampling interval. Hence, the information available to decision maker - i

in the time interval [ti, t.+) is
j+.

ai = {yi(j) 6 } (4.38a)
1 1 j-1

where, 5_ denotes the common information available to the decision makers

in the same interval,,i.e.;

6j I = {yl(J-l), y2(J-l),....,yl(O), Y2 (0)} (4.38b)

_ ..

Let 7 denote the sigma-algebra generated by the information set

, and HN denote the class of stochastic processes {u.(t), t>0} whose

restriction to the interval [t t+) is gi-measurable for all jEe. Then a

permissible strategy for decision maker - i is a mapping ci [0,T] x P (pl+p2)N

m N
IR, such that vi(.,ci )EH.. Denote the class of all such strategies for

decision maker - i by T N. For each f. ErN N i=1,2}, we define the quadratic
1 1 1

strictly convex cost function as -'

. .1
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2
= Efz(T)Fozo(T) + E izj(T)izi (T)

i=0

T 2+ f(ZQ z + E (z-Q z + u ))dtiu(t)= V (ta), j=l,2}
0 i=l

(4.39a) -

where {r >O,Qi>O, i=0,1,2} and the expectation operation is taken over the
i- i

underlying statistics.

Equivalently, in terms of the composite state vector x(t) of (4.4),

the cost function can be written as

T
J(VlV 2 ) = E{x'(T)F()x(T) + f(x-Qx + uiu I + uu 2)dtlu j (t) = vj(t,aj), j=l,2}

0 J
(4.39b)

where r(E) and Q are appropriately defined in terms of the matrices appearing

in (4.39a).

N
A team optimal solution is a pair {v El'. , i=1,2} which satisfies

J(VlV2) = inf inf J(OVV 2) (4.40)

N N
1 2

Here optimal and near-optimal strategies will be obtained for two cases of

sampled observations, as delineated below.

4.2.1. Case 1: Noisy measurements of sampled values of state

At sampled time instant t.,jE8, the decision makers observe

yi(i) =Cio z0 (tj) + C .z (tj) + v i(j)

C.x(t.) + vi(j) ; i=1,2 (4.41)

The random vectors {vi(j);JEe,i=l,2} are assumed to have independent Gaussian

statistics {vi(j) N(O,Vi ),Vi >O,jC,i=l,2}. Their statistics are also
1J 1j
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assumed to be independent of the Wiener processes {v.(t) ;il1,2} and the

initial state vector x(O).

The optimal team solution to the problem defined by (4.4), (4.6),

(4.38)-(4.41) has been derived in [18], and is given by

V*ta P(l j ~). ;~)(~ j =,

tE[t.,t j) jEe (4.42a)
PIP~

where P (t), P (t) are piecewise continuous functions on [0,T] and satisfy

the coupled set of linear integral equations

t -

P (t) =BS.(t) f .. (t,T)B.BZ. .(t)dT - B:L .(t) ;i=1,2
12.ij 1J 11J 12<

t.

jEt~ j+l) '~ 44b

where

t
L ij(t) S (t)[ (t,t) + f D(t,T)B k Pk ()d-rC kEi~ (j) +K. .(t);

L..1, (t) =~ k i ~ +4.42c

j' j+l

K (t) =-(A B B'BS (t))'K..(t) S S(t)B P(t)C~ E i,k1,2, i~k
Uij i i 1 J ik kk ij

K i.(t .+i) 0 ,tE[t.,t ]~ , Ee (4.42d)

S(t) and S (t) satisfy the Riccati equations

S - S -SA -Q + S[B B' + B ; I S(T) T (4.42e)
1 1 2B1

S. A'S - SA- Q + S B B'S ; S(t)= S(t)

tE(t. ,t I i=192 ,j=N...., 1 (4.42f)
j-1 j
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'p(t,-r) is the state transition matrix satisfying

=(A - B B'S - B B5S)P(t,T) ; i(T,T) I(4.43a) ]

1' 2

ij (tT) is the state transition matrix satisfying

i=1,2 ,E@ (4.43b)

*(t,T) is the state transition matrix satisfying

- A)(t,() 2 (t,(T,) = I (4.43c)

*ij) = n(t:) E[x(t ) 6 t and si (t) satisfies

An + Z B iBvi(t i) n(O) x 0;

" itE[t. ,2 j=1,. .. (4.44)

t, ) (t n(t + M(j)[y(j) sCn(tif n l

* (j) =Z(t )c[cA(t )C + v ; i=1,2 jEe (4.45)

" i i

where Z(t) = E[(x(t) n(t (x(t (t and Z(t) satisfies

!::ii"t J l j)  , j=, . , (4 44

=AZ + EA- + GG ; E(O) =N

(t) (t) M(j)C(t.)

and

M(j) =(t )Ci[C(t )c- + v ] (4.47a)

,12.7 •~~ ~ VJ =, j0(.5 '

wher Z~ ) E[x~tj - ~tj)(xtj) n~ )) ] nd Zt) atifie
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V f diag(V.j,V2.) (4.47b)

y(j) =yj) yi(j)] (4.47c)

C = [Cj I (4.47d)

Due to the presence of widely separated eigenvalues, the integro-differential

equations (4.42)-(4.47) involved for computing the optimal solutions are

numerically stiff. This renders the optimal solution computationally

infeasible, specially when the order of the system is very large. Futhermore,

when the small perturbation parameters are unknown, or when one decision maker

does not have a knowledge of the fast dynamics of the other decision maker,

. it is not even possible to compute the optimal solution. Hence, there is a

need to look for suboptimal solutions. The multimodel solution proposed

*below exploits the special structure of the system to yield a solution which

does not require a knowledge of the small parameters, and allows the decision

makers to model only their own fast dynamics. More importantly, as in the

problem with continuous measurements, the multimodel solution is well-posed

in the sense that it is the limit of the optimal solution as the small

parameters go to zero.

The multimodel solution is obtained on solving three low-order

problems: a slow team problem under the one-step-delay observation sharing

-. pattern, and two fast stochastic control problems, one for each decision

maker.

The system model for the slow subproblem is given by (4.17), (4.19)

and the observations by

. .. - " "' ' . . " " " . '' -". w " ' 
' - ' 

-" ' ' - " " " - . - "'' "'". " ./F.-' .'.-.''''.-.'-'.-'-'.". ..'" .. "-.',.'. '.-L'-." '°-".'.-.. . .".. ....... .'" ,'.-,";j '"...... " "...... .... '..... . . ... "
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i ) = zo(t.) + vi(J)

. y(j) - Cz i (t j ) ; jE0 , i=1,2 (4.48)

(i Ciiis

The cost function is given by

T 2
i (V1 ,v = (T)1'z (T) + f(z' Q z + E u: R 5 )dtlu (t)
s' ls 2s Eos(T0 oos(T + (os 0 os Uis isuis )  js

0 i=Jl

= vjs (t,aj ) , j=l,2} (4.49)

where

R.=is (A iiBi )-Q.i(A. .B..)

The optimal solution to the slow team problem defined by (4.17), (4.19),

(4.48) and (4.49) is given by

(t, P oy (j) C E(j)] R lB'iSs (tt ) s(j) i=1,2,. is t~ i ) =is~t [is(J - o , is,

.'."'.'.'.tE [ t, tj ) jE6 (4.50a)

where P ls(t), P2s(t) satisfy the coupled set of linear integral equations

(t R. B-.S. (t) (t BL (T)dT R B.L.. (t) ; i=1,2
5is is 0 is f 0ijs t')oii oi s is oi jss

t.

tE [ t j+ j e (4.50b)
, , tj+ I )

where

t

L (t) =S. (t0bp (t,t.,) + f (t,1kj +KBt
ijs is s A s okRksPks( )dtCko] is(J) + Kijs(t)

t.
i

i,k=l,2 ; i~k ; tE[t t+) ; jE6 (4.50c)

j' j+1%
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-11-1K. t)= - (A o- B .. ()K ()-S.() ()
ij S (A00 Boi Ris B0' is ()Kijs () Sis (tBokRks'kst)c ko Eis~i

K ijs (t j+) = 0 ; i,k=l,2 ; i#k ; tE(tj,tj+ ; jEe (4.50d)

S s(t) and S is(t) satisfy the Riccati equations

S= - A- S - S A - Q + S [B R BI + B R B IS ;S (T) = r (4.50e)S 00O S 0 ll 1 o 6 S OO 0

S.s= A' S. S A Qo + S. B .R -1B'.S. S (t) S S(t )i oo imsso s ol is o is Sis s

tE(t. 1 ,tj ; i=1,2 ; j=N,...,1 (4.50f)

(,T) is the state transition matrix satisfying
5

-1 -1
' (t,r) = - BoR-BA Ss - B 2 R 2 B' 2Ss)(t,T); is(-,,)= I (4.51a)s oo oll l 22 0

p.. (t,T) is the state transition matrix satisfying
is

-- ' ijs(t,T) = (A - B R.- B'S. )I'(tr) " p.. (T,) I
1js o 00 Oiso is 1jS ijs

tE[t t j+ ; i=1,2 ; jEe (4.51b)

ps(t,T) is the state transition matrix satisfying
5

ps (t,r) = A 0 s(t,r) ; 's(-,T) = I (4.51c)

s(j) r= (t.) = E[z (t )16j_ 1 ] and n (t) satisfies
s s Os j

• 2 *

;s = A 00s + E B oiv is(t,c i ) ; s (0) = zoo
i=l1

tE[t. 1 ,t j ) ; j=l,...,N (4.52)

n (t) = ns(t.) + M (j)[y (j) - Con (ti)]s j j

. - . . _ .
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E. Q) E (t.)C- [C. E (t.)C' + C W c + V..]I i=1,2 ;jEe (4.53)
is S J 10 ioS s 10 ii iii 13

where W. satisfies (4.37).

z s t) EII(z Ct.)(t ns (t ))(z s(t)- n (t)) and Z (t) satisfies

2
E A E + E A' + E G .G' E (0) =N

s 00S SO 010 00o i S 00

tE[t . 1 ,t.);j1, ., (4.54)

E (t) = E (t) - M s(j)C 0 (t) J
and

(jQ) =z (t )CI[C z (t )CO + 2 - -.E: + V. 1  (4.55a)
S S j 0 OS 0 11111

y (j) = [y 5 () yS(j)]P (4.55b)

C = [C' C],(45c
o lo 2 45c

1= [Cfi 0OP (4.55d)

C2  = [0 C, 2  (4.55e)

The fast subproblem for decision maker -i is defined by the system equations

-~ (4.28), (4.30), the observations

yi (j) C izi(t) + v.(Q)

(t.)) -zo ( C. ii .z (t. ; jEe (4.56)

and the cost function

T
i = E: Z~f(T)r Z f(T) + f(z- Q zf +U ifuif)dt} (4.57)

if i IL i if 0if f
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Notice that we have studied this stochastic control problem earlier in Section 2.

Its solution, as c -0, is given by

UjfK = - ' (t't.)z. (t. ; tG=[t.~t~) ; Ee (4.58)
iii11if f j ij j ~

where K satisfies the Riccati equation
if

A:.K + K -Q K B Rj~f 0(4.59)
ii if if ji + Q if iiiif=0

~~(t't) is the state transition matrix satisfying

E Jpf(t't) = (A..i - B. i .BjjK )'p (t t ) f i(t .,t) =

teit t ) JE6 (4.60)j'j+l

Z if is the output of the filter

~i if A.. if Biiuif ;t -t1 ,t.);j,,..,

zif(0) =zi +- t (4.61)

Zif (tj = Zif (ti)+ M if(i)[Yif(i) C z if(t)]

* and

Mif(i) =w.cfi(c. E (t )C' + C..W.G'. + V. 1  
. (4.62)

ifS 11 10 11 111 lJ

The following proposition establishes the near-optimality of the multimodel

* solution. Its proof may be found in [191.

Proposition 4.2:

i) v (t'ca. = t' + u~~)+ O(IIE:II) ;VtE(O,T) ;i=1,2
*~ ~ ii is* * *.

ii) (Vl 2= ~s (Vls' V 2s + [if (u if + T tr(LQ1W.)] + O(01d)
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4.2.2. Case 2: Sampled values of continuous noisy measurements

At sampled time instant t., jE6-{O}, the decision makers observe

t.

0(j) f [Ciz(r) + C. z.(-)]dt + q ) -a 113.ii ii

t.
3

= f C x(T)d-r + qi(t.) ; i=1,2 (4.63)

0 13

Note that in the time interval [t ,tl) no observations are made and the
0

decision makers have access only to the prior statistics of the random

quanities involved. Here, {qi(t) ; i=1,2} are standard Wiener processes

independent of each other. Furthermore, their statistics are also assumed

to be independent of the Wiener processes {v.(t) ; i=1,2} and the initial

state vector x(o).

Let

yi (j)= yi(j) - yi(J-1)

t.3
= f Cix()dT + vi(j) ; i=1,2 (4.64)

t-

where vi(j) = qi(t) - q i(tj.l) is a discrete-time Gaussian white noise

process with zero mean and variance V ij (t - t j)I. -

Let aJ be given by (4.38) with y.(j) replaced by y (j), and let 0Ji i

denote the sigma-algebra generated by CLV. Then clearly, a. and V. are

equivalent.

The optimal team solution to the problem defined by (4.4), (4.6),

(4.38)-(4.40) and (4.64) can be obtained in a manner analogous to Case 1,

and is given by [20]
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• _ J

P(t, ) : Pi(t)[y (j) - / Cn(T)dT] - BS(ti(t,t )E(j) i=1,2'i l
tjl

tE[tjtj) ; jE0 (4.65a)j'j+l

where Pl(t), P2(t) satisfy the coupled set of linear integral equations

t
Pi(t) = iSi (t) if :i(t,T)BiBLij()dt - BiL j(t) ; i=1,2.

t. iij

tE[tjlt j+l) jEe (4.65b).

where

t

Lij(t) =Si(t)(t,t)Ei(j) + Si(t) f (t,T)BkPk(T)dT Ai(j) + K. (t)
I-j i i . k k ijt. -

J
i,k=l,2 ; i#k ; tE[t.,t. ) ; jEO (4.65c)

K. (t) = - (A - BBS (t))K i(t) - S (t)B P (t)A.(j) ; K. (tj) = 0
Uj lii ij i k k i ij j+l

i,k=l,2 ; i#k ; tE(tj,t j+I ; jEG (4.65d)

S(t) and Si(t) satisfy the Riccati equations (4.42e) and (4.42f), respectively.

The state transition matrices '(t,T), 'i (t,T) and '(tT) satisfy the

equations (4.43).

,(0) n(t [x(tjI 1 J11 and n(t) satisfies

2 * -

n = An + E B.v.(t,a i) ; n(0) - xi=l 0 _

tE[tj 1 ,t) ; j=, ... ,N (4.66)

t.

n(t.) n(t:) + M(j)[y(j) fj' Cn (idt]

t.j-
lei

Le.
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.(j) and 6~j are appropriate dimensional matrices defined by

t. t. t.

tz ( j 0 y E tt + r(j r G - T rtj-1l j-1l

C'drdr]Vi ; =1,2 ; Cee (4.67a)

i k j- j1 j1 j 1

t. 
t.

+.j = f ck(,rGGdft (Tr)Cf VTdrt 1 )cd
j- r.

t. 
t.

+. f Ck(t,r )GGz~ f P'r ,)C tr]V.t +V.Ir j 1j 11 iIL
j-l-

t. t.

+ f C f(t (T.1 )tGt f v-(Z t)Ctid cd d t +=, V~ 46ct j-l iij1

tt t t
j- j-2 T

Z(t ) - M(j)[ f C, (r,t. 1 )drE(t W~±(tilt (4.68)
3 tj-l3

t r
i-i

+4. ~~rTG - (t,~~r

t r~

7-
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M(j) is given by

t. t. t.
3 3 J

M(j) = [ jt )E(t l)f q'(r,t J 1 )C-dr + f p(t.,T)gG'f (r,r)C'drdtIV I1

tj- tj T
j-l j-1

jEa (4.69a)

where

t. t

J. = Prt 1 d!t 1 J (r,tj l)Cdr + V.

j-l tj.1

t'. t.j r ,
+ f C f $(T,r)GG"f4(kT)CdidTdr ;ljC (4.69b)

t- t T
j-l j-1

V= diag(V .,, V ) (4.70a)

yMj = [N(i) y'(j) I (4.70b)

C = [CI C21, (4.70c)

As in Case 1, the optimal team strategies are unique and linear in

the information available to the decision makers, but the expressions involved

are more complicated. Hence, the computational problem worsens, making the

need for suboptimal solutions more acute. Again the appealing structure of

the multimodel solution makes it an attractive alternative.

As in earlier problems, the multimodel solution is obtained on

solving a lower order team problem in the slow time scale and two low order

decentralized control problems in the fast time scale. The system model for

the slow subproblem is given by (4.17), (4.19), the cost function by (4.49),

and the observations by

. i. " - . -- ' . . . .- . . - - . --. . . . . ..- - • - - •,
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is( = oos d

t

yi(j) - f Ciizis ()dT ; i=1,2 ; jEe-{o} (4.71)

ti-tj - 1

The optimal team solution to this slow subproblem is given by

t.

(tc P. (t)[y (j) - f C n (r)dT] - R-1 B.S k (t,t) s(j)
is i is i s  - C i is o 5

i=1,2 ; tE[tj,tj+ 1 ) ; jEe (4.72a)

where P (t), P (t) satisfy the coupled set of linear integral equations

Is '2s

t

P(t) R R-Bo.S. (tlf ,j t,)B .'-B'.L. (T)dT R R-Bo,.t (t) ,
is ois is t  oi is oi ijs is o j

t.

i=1,2 ;tE[tj~t j+l) jEe (4.72b)

where

L js (t) S is (t) s(t,t)z is(J) + Sis(t)f (t,T)B okRkPks()dAis(j) + Kijs(t)

t.J

i,k=l,2 ;~ tE[tjltj); jEe (4.72c)

K (t) = -(A - B oR B. S. (t))Ki ( t ) - S. (t)B R Ps ( t ) ' i s (j)
ijs 00 01 is 01 is ij s is )ok kSks (tAis

Kijs (t.+) = 0 ; i,k=1,2 ; i#k ; tE(tj,tj] ; jEe (4.72d)

S (t) and Sis(t) satisfy the Riccati equations (4.50e) and (4.50f), respectively.

The state transition matrices 1 (t,T), ijs(t,t) and Is(t,r) satisfy the

5 ijS 5

equations (4.51). Furthermore,
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U s TI (t) E[z (t.i) 6.i]j and n s(t) satisfies

;s A n + 2 B v -tC 000 s 0 xis (tc 00~(0

U tE[t._t);jl. (4.73)

ni (t) (t) + M (j 1)- )(~ T

ti-1

E (j) and A (j) are appropriate dimensional matrices defined byis is
t. t.2

iss j1sj1t j- s 1  o t.j1 i=l 10

t.

fJ4;(r~r)C~drdr]V.. i=l1,2 ;j~a (4.74a)

t. t.

(j[)C~ (t,t. 1 )dtZ (t.1 )f V-(t~t. 1 )C'dt

t. 0t

+ fi 2t~r G G'~(T r)C'dTdr] V7
+fCk (t.,r 0 1 oi 8 10r

where

t..t

*=v+ f C 0 iipf tt 1 )dt f(tgt.pf 4<(t ~.1 )Cd

t. t.

3-1 j-l1
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j r 2

+ C4(t,r) Z G. G' f '(2,T)C' ddTdr
t t lT
j-1 j-1i1

+ f f ~ ~ 0 C~f(r).Gff(k,T )Cid4'dr ;i=1,2 ;jEe (4.74c)

if (t ,t )is the state transition matrix satisfying

and W. satisfies (4.37). Now,

Os J 5 J Os J 5 s

where E (t) satisfies

2
=A Z + E A- + Z G .G' E (0) =N

s 00 s S 00 oi 1 i 011 00

ti-i

t. t.
j j 2

+ f fc(rT Z G G.V(t.-r)d-udr]

j-11
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M (j) is given by

t.

M (J) = [s (titjl)z s (t jl )f cs(r,tj)Cdr
S~ ~~~ Si :- S: - 1 j l

.-. s ti-i

t. t.

+ f ¢s(t.,T) ZG oGofs(r,)C'drdIV.
t j i 0 o 0

j-i
jE8 (4.76a)

where

t. t.

V. V. + f Cops(t,t 1 )dt s(t 1)f ,-(t,tj- 0)C-dt
tj -I tj -i

'"t. t.

22

+ f Ef Cois (t,r) Z giog fo3s(, 1)Cdidtdr

i t 3t

j-1 l T
2.t

t. t.

+ f f C(p(-,r)G Gjif~jf(,T )C:,didTdrl jEe (4.76b)
j+ Cii if jii

t.1 ~lt._ 1tjl f (t  - ) id

t .- tjlt

V. is defined by (4.70a); Co, C 1 , C2 2 are defined by (4.55c-e) and:3

YsO) = [Y3s(j) Ys(J)I . (4.77)

The fast subproblem for decision maker - i is defined by the system equations

(4.28), (4.30), the cost function (4.57) and the observations

P |I
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t.

Y j Ciii(x)d-r + v (i)
t.
j-

t. -

= i~i) -I [C~0 0 (T) + C1 ~ 1 (-r)]dT jEO (4.78)
tj-

This control problem has been studied earlier in Section 2. Its solution,

as e 0 is given by
1

Ui=- B. K (t t )z i (t); tE~t st );j~e (4.79)
if iiif if 'j if jj+l

where K. satisfies the Riccati equation (4.59) and 1' (t't) satisfies
if if j

(4.60).

Z if is the output of the filter

Si if = ii if + ii if jjl. .. ,

z f(0) Z.(4.80)
if i0

Z~(t) = ~(t) + M f()[Yif(j) -f (T)dT]
t

and !A

Mif(j) =[i(tj~t ~)Wif P'f(r,t l)C'.dr

j-1

t. t.

+I~f(t.,T)G. .G'f V f(rT)C' drdT]V (.1
if ii ii if ii ij (.1

A near-optimality result, analogous to Proposition 4.2, can be established in

this case also by following the same lines:
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Proposition 4.3:
* * *"-

i) vi(tC&i) V is(tcx) + uif(t) + 0( Qs) ; VtE(O,T); i=l,2

* * 2
ii) J(G, 2 ) = is, 2s) + E [Jif(uif) + T tr(Qi,W )M + 0(I)E

0

5. CONCLUSIONS

Through an informal discussion of a series of problems,we have attempted

to analyze the interaction between model simplification and strategy design in

a multimodel context. The objective was to achieve a clear understanding of the

interrelationships between the structural features of large scale systems, like

time-scales and weak-coupling, and strategy design under certain quasi-classical

information patterns.

Weakly-connected subsystems with continuous equilibria exhibit a

two-time-scale behavior. The slow system-wide behavior is caused by the

interconnections and is described by an aggregate 'core' which appears as a

slow subsystem in the singular perturbation form of the model. The fast

phenomena which consist of 'local' transients within each subsystem are weakly-

coupled. The control design problem for such systems can be approached via .-

the multimodeling concept. Each decision maker's control can be divided into

a slow part, which contributes to the control of the core, and a fast part

controlling his own fast subsystem. Hence, the slow subproblem is a multiple

decision maker problem under the same solution concept (Nash, team, etc.) as I
the full problem, while the fast subproblems are decoupled stochastic control

~~. .. . .... .......... .... ................. .. -..
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problems. Since each decision maker need not know the parameters associated

with the fast subproblem of other decision makers, the multimodel solution

is robust with respect to modeling errors; a very desirable feature in large

scale system design.

Our results serve to demonstrate the richness in the modeling

structure with multiparameter singular perturbations in the context of

multimodeling problems. In each case, the limit of seemingly complex

integro-differential equations associated with the optimal solution has a

nice appealing structure when interpreted as a multimodel solution. Thus . A

the multimodeling approach using singular perturbations is in some sense

'robust' with respect to a class of solution concepts and information patterns.

4

*. -
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